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Coupled radiation and laminar mixed
convection in an absorbing and emitting
real gas mixture along a vertical plate
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Abstract—The radiation transfer part is treated by the application of a random statistical narrow-band
model and the Curtis-Godson approximation. An implicit finite-difference technique, developed for this
study is used to solve the mass, momentum and energy conservation equations in a coupled manner.
Excellent agreement between our finite-difference solutions and those of other authors are obtained for
pure natural convection, pure forced convection and mixed convection without radiation. The investigation
of the boundary conditions at infinity shows that the radiation penetration length at atmospheric pressure
is of the order of one pure H,O equivalent metre, which is one order of magnitude larger than the boundary
layer thickness for mixed convection without fluid radiation. Comparison of results with and without
radiation in various conditions shows that fluid radiation enhances the effect of buoyancy forces, increases
temperature, velocity, and conductive heat transfer at the wall, but decreases the wall radiative heat flux.
A dimensionless parameter R is introduced in order to enable a crude estimation of wall conductive flux
enhancement due to radiation.
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1. INTRODUCTION

CouprLeD radiation and mixed convection heat trans-
fer arise in many engineering devices (such as nuclear
reactors and solar energy systems) where the inter-
action of radiation, natural and forced convection
becomes significant. Coupled radiation and external
convection over surfaces is a complex problem, since
the fluid radiation induces an additional difficulty for
the boundary conditions at infinity; in fact the radi-
ation penetration length is much larger than the con-
ventional external convection boundary layer thick-
ness. A limited amount of work is only available in
the area of radiation with natural convection [1-6]
and with forced convection [7, 8] along a vertical plate.
Among these studies a wide range of numerical tech-
niques has been used to solve the governing equa-
tions: the singular perturbation technique (1], the
approximate integral method [2}, local non-similarity
techniques {3, 4, 6] and finite-difference methods {35, §].

Boundary conditions at infinity have been discussed
by Hasegawa et al. [3] in their analytical and exper-
imental studies on simultaneous radiative and natural
convective heat transfer along a vertical plate. They
concluded that the dimensionless temperature and
velocity are not zero for large n (dimensionless
pseudo-similarity variable for natural convection).
Although the validity of the boundary layer approxi-
mation for large n has to be submitted to further
examination, the solutions in the vicinity of the heat-
ing wall are nevertheless acceptable. The boundary
conditions at infinity were also treated by Cess [7]} in
a study of coupled radiation and forced convection in

boundary layer flow along a flat plate. The flow region
was divided into two layers: the conventional ther-
mal boundary layer which is optically thin, and an
adjacent radiation layer which is not optically thin
and within which conduction effects were neglected.
Most previous authors used a gray gas assumption
[1-5, 8], and the optically thin [2, 7] and thick [1, 2, 5]
limits were also frequently considered. Cess [7] treated
a non-gray gas for which the absorption coefficient,
depending on the wavelength, was assumed to be
independent of temperature. Novotny et al. [6] for-
mulated the radiation term using the total band ab-
sorption based on the exponential wide-band model.
However, more accurate radiative models such as
the exponential wide-band model [9-12] and the
random statistics narrow-band model [13] have been
more frequently applied to radiation coupled with
internal natural or forced convection heat transfer.
The present work investigates coupled radiation
and mixed convection heat transfer along a vertical
isothermal plate. To our knowledge there has not been
any reported study concerning coupled radiation and
mixed convection heat transfers. The usual boundary
layer equations involving a radiative dissipation term
are introduced. The absorbing and emitting fluid is
modelled by a random statistical narrow-band model
and the Curtis-Godson approximation (Section 2).
The radiative transfer part is treated using a method
similar to that used in refs. [13, 14]. An implicit finite-
difference technique, a marching solution procedure
and an extended tridiagonal matrix algorithm (E-
TDMA) are applied to solve the mass, momentum
and energy conservation equations in a coupled
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NOMENCLATURE
a thermal diffusivity u axial velocity component
s thermal capacity v normal velocity component
d ratio of geometrical series x axial coordinate
g gravitational acceleration Xu,0 molar fraction of water vapour
Gr. local Grashof number, gf(T, — T.)x>/v? ¥ normal coordinate.
h¢, hg local conductive and radiative transfer
coefficients Greek symbols
I radiative intensity o gas layer absorptivity
P blackbody radiative intensity B coefficient of thermal expansion
I incident radiative intensity B. mean line width to spacing ratio
k. mean line intensity to spacing ratio inside 3 emissivity
Av n dimensionless pseudo-similarity variable
1 elementary column length ¢ dimensionless temperature,
m normal grid spacing number (T-TH)NT,—T,)
n axial grid spacing number A thermal conductivity
Nu, local Nusselt number for mixed u cosine in radiative developments
convection without radiation, hx/4 v kinematic viscosity
P total pressure Av spectral range
9. conductive heat flux p density
g~ radiative heat flux T transmissivity.
R dimensionless parameter
R, relative enhancement of conductive flux,  Subscripts
(9.~ 90/ q: w wall
Re,. local Reynolds number, 1 x/v v spectral quantity
T temperature ] ambient.

manner. The solution procedure is detailed in Section
3. The boundary conditions at infinity are studied
either from the temperature and velocity profiles or
from the radiative dissipation distributions (Section
3.1). Our finite-difference solutions for mixed con-
vection without fluid radiation are compared with
those of other authors in Section 4.2. Different con-
trolling parameters are studied for coupled radiation
with mixed convection, the results on temperature and
velocity profiles and on heat transfer coefficients are
reported in Section 4.3 and a discussion follows.

2. BASIC FORMULATIONS

Consider coupled radiation and mixed convection
along a vertical plate, at a temperature 7,, and with
an emissivity &,,, immersed in an absorbing, emitting
but non-scattering gas mixture at temperature T,
with an assisting external flow at u,, (Fig. 1).

The following assumptions are introduced :

(1) two-dimensional, steady-state laminar flow;

(2) the fluid has constant physical properties except
for density in the buoyancy term and for radiative
properties; the Boussinesq approximation is
employed ;

(3) the usual boundary layer assumptions are made ;

(4) the radiative dissipation in the x-direction is
negligible in comparison with that in the y-direction,

and the radiative flux at a given location x depends
only on the temperature profile at the same x location ;
(5) the wall is diffuse but not necessarily gray.

As pointed out in refs. {10,13], a dimensionless
treatment of the governing equations has a very
limited utility in the case of realistic gas band
radiation. The mass, momentum and energy con-
servation equations are, under the above assumptions,
written as follows:

Z
é
/
%
%
,4
%
é
é
7
/
/
7
/
Z
7

rrrrtt

Ter v,

—

F1G. 1. Geometry and coordinate system.
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In equation (3), ¢g® is the radiative flux per unit area
in the y-direction

H -1
=3 [Zzz(f Tudp— J' ?:udu)]m- @)
spectrum G 0

where u is the cosine of the angle between the direction
of radiative intensity and the Oy axis; J, the radiative
intensity averaged in the spectral range [v—Av/2,
v+-Av/2], which is given, for the non-scattering
medium, by the following equation:

o, (5, 9) (s s)

1,(9) = 1(0)z, (0, S)+f D)~ &)
where 1,(0), I°(s") are respectively the spectral radi-
ative intensity at the boundary and the blackbody
intensity related to the temperature T'(s'}; 7.(s",5)
the mean transmissivity of an elementary column gas
medium from s° to 5. The high resolution spectral
correlations, which appear in t,(s, 5) should be taken
into account ; a comparison of spectral correlated and
non-correlated radiative transfer calculations {15]
shows that non-correlated models may lead to in-
accurate qualitative results. In the present inves-
tigation, we account for the spectral correlations. A
random statistical narrow-band model due to Goody
{16] with an exponential-tailed inverse line-strength
distribution [17] is used to calculate the radiative
transmissivities of the absorbing and emitting gas
medium. The transmissivity of a homogeneous
column of length /, due to the gas species i, averaged
over the spectral range [v— Av/2, v+ Av/2), is given by

T = exp [— % ((1 + ——2R';flk'>ilz — l)] {6

where x; and P are the molar fraction of the absorbing
species i and the total pressure, respectively. k,, B, are
the spectral parameters generated either from exper-
imental spectra [18] or from a line-by-line calculation
[14,19-21]. For a non-isothermal or non-homo-
geneous column the Curtis-Godson approximation
[22, 23], which leads to very accurate resuits, is applied
to transform such a column into an equivalent homo-
geneous column.

The boundary conditions for equations (1}-(3) are

T=T, aty=0 N
T-»T, aty—o &)
u=u =0, T=T, atx=0 6]

For the radiative transfer equation (5), the bound-
ary conditions are given as

u=rv=0,

U Ug,

Table 1. Present calculations with different discretization
numbers (m,n) compared with the results of ref. [28] for
mixed convection without radiation and Pr = 1

Nu,/\/(Re,)
Present results (m, n)

Gr/Re?  (20x100) (40x200) (80x400) Ref. [28]
0.2900 04030  0.3940 03905  0.3864
0.4210 0.4162 04093 04068 04054
0.5300 04279 04219 04197  0.4189
0.6290 0.4349 04303 04290  0.4297
0.7240 0.4425 04385 04378 04392
1.2010 0.4783 04766 04764  0.4834
1.7790 0.5099  0.5101 0.5111  0.5175
2.5920 0.5457  0.5478  0.5499  0.5546
3.8730 0.5882  0.5928  0.5962  0.6012
6.1690 0.6485 0.6556  0.6601  0.6644

11.0660 0.7348  0.7453 07515  0.7582

24.9800 08777 08924 09007 09179

99.9950 1.2319 1.2567 1.2697  1.2829

I =e, 8 (T)+(0—-e) aty=0 (10)
I, =01(T,) aty-o (1)

where 7, and T, are the outgoing and incident radiative
intensities at the boundaries, respectively.

The radiative flux depends on the temperature field,
however the temperature and velocity fields are
modified by the gas radiation. Thus, an iterative solu-
tion scheme is introduced : the mass, momentum and
energy conservation equations (1)-(3) and radiative
transfer equation (5) are alternately solved ; the radi-
ative flux and dissipation are deduced from the pre-
viously obtained temperature field and then used to
adjust the temperature field by solving equations (1)
(3). The final results are obtained when the maximum
changes of the temperature and radiative flux are
small enough.

3. SOLUTION PROCEDURE

Equations (1)-(3) together with boundary con-
ditions (7)-(9) are solved using an implicit finite-
difference scheme. Second-order derivatives are writ-
ten in central differences; forward differences are
used for first-order derivatives in y, and backward
differences for x derivatives. As equations (2) and (3)
are parabolic, a marching solution procedure in the
x-direction may be applied.

The flow region is divided into a grid withnand m
spacings in the x- and yp-directions. A constant mesh
size is used for x, namely Ax = x,,,,/n, where x.,, is
considered to represent the total height of the plate.
The value of x,,, is chosen to correspond to a Grashof
number Gr, =9.6x107,ie.

Xmux = [9.6x 107V} /gB(T, — T)]'>.
The mesh size for y is a geometrical progression of
ratio d defined by Ay./Ay, = d™! = 100. Different
values of n and m were investigated in various con-

ditions, Table 1 shows the results calculated with
different values of m and #n in the case of mixed con-
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. When the values of m

1LG ragy il il Qe i7

and n are increased from (40,200) to (80,400), the
variations of local Nusselt number are smaller than
i%. In the following computations, the values of
(m, n) = (40, 200) are chosen. The radiative transfer
calculation is based on a different grid, generated from
the above one. My = 20 spacings in the y-direction
is large enough; doubling M, leads to a maximum

—-3
temperature difference less than 1077, =T).

vection without fluid radiation

The
spacing size Ay® for the radiative transfer solution is
the sum of two adjacent ones for the coupled transfer
calculation when m = 40, Linear interpolation or
extrapolation are employed for the transformation
of radiative dissipation between the two grids. The
resolution of the radiative transfer equation (integral
equation) requires a smaller grid number than mo-
mentum and Chergy cquutiGﬁS \pak rtial differential
equation). This is due to the different mathematical
nature of these equations.

Non-linear equations (1}-(3) are coupled to each
other through temperature and velocity. The quasi-
linearization technique is used to linearize equations
(2) and (3), except for the radiative dissipation term
in equation (3), because it is given from an iterative
solution. A second iterative scheme is necessary for
the solution of the linearized equation system deduced
from equations (1}-(3). By using a method similar to
that in Blottner [24], the tridiagonal matrix algorithm
(TDMA) has been extended, in the present work, to
solve the governing equations {mass, momentum and
energy conservation equations) in a coupled manner.
Our extended method is called E-TDMA [25].

The marching solution procedure staris at x =0
and proceeds step by step until x = x,,,,. For each
step x, two levels of iteration have to be carried out.
The primary iterative loop involves the solution of
the system equations {1)-(3) by the application of E-
TDMA, using the radiative dissipation distribution
issued from the previous second level of iteration. The
primary iteration is carried out until convergence is
obtained. The change in the dimensionless local tem-
perature (8 = (T—T_)/(T,—T,)) ineachcycle of cal-
culation is determined and when the maximum change
is less than 10~*, the solution is considered to have
converged. This is verified by the fact that no differ-
ence in the results is observed when the convergence
criterion is taken to be 107, A second level of
iteration is performed for radiative transfer: cal-
culations of the radiative flux and dissipation are
based on the converged temperature field from the
primary iteration. When the maximum change in radi-
ative dissipation is less than 2% of the peak value, the
convergence of radiative dissipation is assumed to
have been obtained. Dividing the convergence criterion
of the radiative dissipation by 2 leads to a difference
in dimensionless temperature of less than 0.1%.

The double iteration procedure is initialized at each
step x by the temperature, velocity and radiative dis-
sipation profiles at x—Ax. The initial radiative dis-
sipation at x = 0 is taken to be zero.

4.1. Calculation without gas radiation

Preliminary calculations have been carried out
without consideration of the gas radiation over the
regimes of natural, forced and mixed convection. The
temperature and velocity profiles obtained by our
finite-difference method at various x locations are
compared with the similarity solution of Ostrach [26]
for pure natural convection and with the similarity

solution of Blasius flow [27] for pure forced convec-
tion. An excellent agreement between our regulis and

LINL. BA RARSURAL & I DCLWOCH OUT Sl [aale

the similarity solutions is obtained. The largest devi-
ation in velocities and in temperaturss at location x
in the range [Xm./10, X is less than 1% for both
cases of pure natural convection and pure forced con-
vection. The same maximal deviation is observed for
Nusselt numbers and wall friction coefficients as

shown in Table 2. The local Nusselt number for mixed

with
with (g

tha numerical

convection flow is comnared numerical

onvection flow is compared
results of Raju et a/. [28]. Figure 2 shows the variation
of Nu,/\/(Re,) with Gr/Rel. Our finite-difference
solutions agree well with those of ref. {28].

4.2. Boundary conditions at infinity

Coupled radiation and mixed convection cal-
culations are carried out for an air-water vapour mix-
ture. It should be pointed out that there is no difficulty
in the application of the present formulations to any
other radiating real gas mixture. The thermophysical
properties of the air-H,O mixture are evaluated
at a film temperature (7,+7,) 2 by identical

wara nhtn

formulations to those of ref. fl '“ which were obtained

AV WG LIRS WS L Yyt

from refs. [29, 30}. The H,O absorpuon bands centred
at 2.7, 6.3 um and the rotational band centred at 20
um are considered with a spectral resolution Av = 25
cm™ !, and 140 spectral intervals are involved.

A difficulty in the treatment of coupled radiation
with external convection over a flat plate is the deter-
mination of the distance y,,, far away from the plate

At hothainfinite hanndn
whichm mnay be considered to be the infinite ooundaryin

equations (8) and (11), since the radiation penetration
fength is much larger than thermal and dynamic
boundary layer thicknesses. For pure natural con-
vection flow along a vertical plate, )., may be evalu-
ated by

for fluids with a Prandtl number Pr in the range of

3 a n air (9] +
{0.5, 1.0}, which is appropriate for an air-H,0 mixture.

For pure forced convection flow with Pr in the same
range, a similar equation

=1J/(Re) =5

may also be used to estimate the value of yy,,,. When
the fluid is a radiating gas, the above equations are no
longer valid for determining the value of y.,.. Most
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Table 2. Finite-difference results for pure forced and pure natural convection, compared to similarity
solutions (Simil.) for Pr=1

. N:ux/(Rex)”z C.I,/('Re,\')”2 Nux/(er b

Re, Simil. Our Simil. Our Gr, Simil. Our
1084.0 0332 0.332 0.664 0.663 4.48 x 10° 0.567 0.568
1445.0 0.334 0.667 6.15 % 10° 0.567
1807.0 0.331 0.661 8.18 x 10° 0.567
27100 0.333 0.666 1.06 x 107 0.566
3614.0 0.332 0.665 1.35x 107 0.566
5421.0 0.334 0.669 1.69 x 107 0.566
7229.0 0.333 0.665 2.07x 10 0.565
10843.0 0.335 0.670 2.52x 107 0.565
14458.0 0.333 0.666 3.02x 10’ 0.565
21687.0 0.335 0.671 3.59% 107 0.565
354220 0.331 0.662 422 x 107 0.565
40483.0 0.332 0.664 492x 107 0.565
45543.0 0.333 0.666 5.69 x 107 0.564
50603.0 0.334 0.667 6.55x 107 0.564
69399.0 0.330 0.660 7.48 x 107 0.564
80966.0 0.332 0.663 8.50 x 107 0.564
92532.0 0.333 0.665 9.60 x 107 0.564

authors of refs. [1-8] have pointed out that the inter-
action of radiation and convection widens the bound-
ary layer thickness, yet very few reports can be found
for the determination of y,,,, in different physical con-
ditions. In the following we will investigate the value

Of ¥omaes in the case of coupled radiation and mixed

convection along a vertical plate.

At first pure water vapour at T, = 600 K and
%, =1 m s~! along a vertical isothermal plate at
T, =650 K, g, = 0.5 is considered. The governing
equations are solved with different values of
Va2 = 0.0264, 0.4528, 0.9055 m, which corre-
spond to values of the dimensionless pseudo-similar-
ity variable for pure natural convection 5 = 20, 40,
80 at x = x,,,. The temperature, two components of
velocity and radiative dissipation profiles at x = xp,,
are partially shown in Fig. 3 for the three cases. It is
observed that the results for temperature T and the
axial velocity component u obtained with small and
large values of y,,.. differ only in the vicinity of ym,,.

—-=Pure natural convection [24]
= Pyre forced convection [27]

X Numerkel resulls of 28] /
= — Prosant resulis
I'OM
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FiG. 2. Local Nusselt number for laminar mixed convection

flow without radiation along an isothermal vertical plate.

T 23:2.4

These differences are due to the conditions imposed
At ¥ = Vuax» T = T, and u = u,,. As no condition at
¥ = Ymax has been imposed for the normal velocity
component v no similar behaviour as for T and u in
the vicinity of y = y... are found in the v profile.
The temperature profile obtained with yo.. =
0.4528 m is accurate to within 1% over the tem-
perature difference 7,,— 7T, as shown in Fig. 3.
This value of yn.. to get a 1% accuracy for tem-
perature is generally dependent on the fluid, the tem-
perature level, the temperature difference, the ambient
velocity ., etc. In the following we chose the value

50%-
s | {a) femperoture
-
SW 1 1 i > A
1.04 ¢
s 102 JK..(i axial velocity component
1.00 i
0.98 L . 2 L " i L A N

£ -0
-0.01 L L 1 L L L (] A i
50
% (d) rodictive dissipotion
Zow
Y S R Y S TN T R

y (m)

Fi1G. 3. Temperature, velocity and radiative dissipation pro-

files at x = x,,,, calculated with different values of y,,, (%,

0.22464 m; [J, 0.4528 m; ——, 0.9055 m) for pure water

vapour at conditions T, = 650 K, ¢, = 0.5, T, =600 K,

U, = 1.0ms™ ' (Re,, Gr,, Gr,/Rel are respectively 1.24 x 104,
9.6 x 107, 0.621).
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radiative dissipation

"2 — T T Y T T T T 1

0.0 0.1 0.2 0.3 0.4
y (m)

FiGc. 4. Radiative dissipation distributions at different

locations x = X.,./10, Xpai/d Xma/2, Xmax fOr pure water

vapour at conditions T, = 650 K, &, =0.2, T, = 600 K,

u, = 0.5ms" "' (Re,, Gr,, Gr./Re} are respectively 6.22 x 103,
9.6x 107, 2.49).

Of Ymax» corresponding to n = 40 and denote it by
Yp=d0'
40xm3!

Yenax = W = Yy d0- (12)

4

This choice will be discussed later.

The radiation penetration length is characterized
by the fact that the radiative dissipation —dq®/dy
tends to zero at this distance from theé wall. The radi-
ative dissipation distributions at different locations
X = Xpan/ 10y Xmax/4s Xmax/2, Xmex are presented in Fig.
4 for pure water vapour at T, = 600 K and u,, = 0.5
ms~'and a wall at T, = 650 K, ¢, = 0.2. The peak
value of radiative dissipation is located at a distance
from the wall corresponding to the thermal boundary
layer thickness for mixed convection without fluid
radiation (see Fig. 6 which presents the temperature
and velocity profiles in the same conditions as Fig. 4).
The radiative dissipation decreases to 1% of its peak
value at nearly the same distances from the wall:
y = 0.54, 0.55, 0.56, 0.60 m for X = X /10, Xpnar/4,
Xmax/2s Xmax» Tespectively. The radiation penetra-
tion length does not seem to have much dependence
on x.

In general, the medium absorbs more than it emits,
but there exists a small region near the heating wall
where the medium emits more than it absorbs. In
the immediate vicinity of the wall, {(—0d¢%/dy) grows
quasi-linearly from a finite negative value (not shown
on Fig. 4 for scale convenience). In fact, the medium
temperature in the region where (— 8¢%/0y) is negative
is close to the wall temperature, the cold medium far
away from the wall is heated by radiation from the
medium in the vicinity of the wall. This phenomenon
has also been observed in previous studies [13, 15}.
Furthermore, the strong radiative absorption by the
medium in the vicinity of the wall leads to large con-
ductive diffusion which balances the negative radiative
dissipation in this region. Figure 5 shows the radiative
dissipation, the conductive diffusion and the con-
vective term in the energy equation vs the coordinate
y. The distributions of conductive diffusion in the

kW m3
10-\ + Conductive
5. \ ‘ conductive w::::; r::won
0
ot R
=— radiative
x {(cm)
-1+
0123 45¢6 782910

FiG. 5. Distributions of conductive diffusion (1(&°T/&y?).
radiative dissipation (— (8¢%/&y)) and convectiveterm at the
location x = x,,, in the same conditions as in Fig. 4.

cases considering and neglecting medium radiation
are significantly different.

4.3. Interaction of radiation and mixed convection

Figure 6 presents the temperature and the two com-
ponents of velocity profiles at x = x,,,, for pure water
vapour at the same conditions as in Fig. 4. The results
for pure natural, pure forced and mixed convection
without radiation are also illustrated in Fig. 6, for the
same wall and fluid conditions, in order to show the
interaction between radiation, buoyancy force and the
effect of external forced flow. It is found that the
gas radiation significantly increases the temperature
gradient in the vicinity of the wall, wall conductive
flux and also the width of the thermal perturbation
region (Fig. 6(a)). The temperature for mixed con-
vection approaches the ambient temperature 7. more
rapidly without radiation than with it.

The radiative heating of the fluid in a thick layer

650
640
630
620
610
600

1.2
0.8
0.4
0.0 &£
0.01

0.0

-0.01

-0.02

T (K)

ulu,,

viu_

504006 008 0.10

y(m)

FiG. 6. Temperature and velocity profiles at x = X, for

mixed convection with (~£3-) and without radiation

{(—), pure forced convection (—-—), and pure natural
convection {----) in the same conditions as in Fig. 4.
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FiG. 7. Temperature and velocity profiles at X = Xxg,, for
mixed convection with (——) and without radiation
{(—- —) at d!ﬂ'erent values of (1) u, = 0.2, Q) u, =0.5,(3)

iy, = 2.0 m s~ for pure water vapour with the conditions

T.,=65K, g =05, T, =600 K (Re, values are respec-
tively 2.49 x 10’, 6.22x 107, 2.49 x 10%).

induces a buoyancy force up to the same distance
from the wall. This is observed in the axial velocity
profiles (Fig. 6(b)). The fluid radiation assists the
natural convection flow. This fact allows us to choose

the value of y,.,. given by equation {12).

For pure forced convection, the external forced flow
is dragged by the viscous force at the wall. Therefore,
a second flow several orders of magnitude smalier
crosses the boundary layer in the y-direction and the
normal velocity component is then positive (Fig. 6(c)).
Opposingly, a buoyancy force drives a flow along the
wall in the x-direction: a secondary flow is needed to

a fAawr ala rm
auyply the flow along the wall, so the nor mal VCIOCE'."

component for pure natural convection is negative.
For mixed convection without radiation the normal
velocity component profile is located between those
of pure forced and pure natural convection. The direc-
tion of the normal velocity component depends on
the relative effects of the buoyancy force and forced

flow.
Ta
Aculpoxa.unc and axial velocity are shownin ]:‘g 7

for mixed convection with and without gas radiation
in the same conditions as in Fig. 6 except for the
infinity velocity u,, which is taken to be 0.2, 0.5,
2m s~ !, respectively. The effect of radiation increases
both temperature and velocity when u,, decreases.
This is to be expected, since the decrease of u, is
equivalent to an increase of the relative effect of buoy-

£
ancy force on forced convection flows. On the other

hand, gas radiation in the case of high u,, values no
longer affects the velocity distribution, but slightly
modifies the temperature field (see Fig. 7, curve 3).
Heat transfer coefficients in the three cases are pre-
sented in Fig. 8 for mixed convection with and without
gas radiation. The conductive heat transfer coefficient

is calculated from
8T
—i
( ay )‘v ™ 0

. ~(2)

1, \OV =0

he = ———

(13)
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Fic. 8. Conductive and radiative transfer coefficients vs x;
same conditions and symbols as in Fig. 7.

where A is the thermal conductivity of the gas mixture.
The radiative transfer coefficient is deduced from the
wall radiative flux

9y y
Tw - Tno ' !
When gas radiation is not considered, the above equa-
tion is written as

hy = 14)

(1{
g = T Tco Y

where ¢ is the Stefan—Boltzmann constant. Gas radi-
ation enhances the conductive flux. This increase is
more significant when u,, is small. At x = X, the
conductive transfer coefficient is doubled by the gas
radiation for %, = 0.2 m s~ ! and increases by 54% at

» =2 m s~ '. The wall radiative flux is diminished
when the gas radiation is considered:
medium near the wall at a temperature above T,
increases the contribution of incident radiative flux to
the wall above that for the case of the transparent
medium. The variation of A with u,, is not as sig-
nificant as that of i ; kg increases slightly with u,, but
the difference Az — g decreases with u,.

Results on temperature, normal velocity com-
ponent and radiative dissipation profiles at x = Xpg,
are reported in Fig. 9 for different values of the wall
emissivity for the case of pure water vapour at con-
ditions T, = 600 K, u, = 0.5 m s~ ' and T, = 650
K. The wall emissivity varies from g, = 0.01 (very
reflecting wall) to 1.0 (black wall). In the first case,
the wall radiation is very small, hence the flow is
less heated than at a high emissivity ; tcmperature,
velocity component and radiative uiSSip&ﬁOi‘x increase
with the wall emissivity. The heat transfer coefficients
corresponding to the above three cases are presented
in Fig. 10. The conductive transfer coefficient A
increases when &, decreases. Compared to mixed con-
vection without gas radiation, A increases by more
than 110% for &, = 0.01, about 90% for &, = 0.2 and
less than 8% for e, =1.0. In fact, when the wall is

sl tha
moie 1c1u;t..t1115, ne uyuunx yaul length of the gas is

effectively stretched : the interaction of fluid radiation
with convection is strengthened.
A computation has also been carried out for the

tha wadintd
I-lle 13 auiudﬂg



326

{c) temperature

wh,,
ol
o«
(%)

{b) axial velocity component

0.2
y (m)

F1G. 9. Temperature, velocity and radiative dissipation pro-
files at x = x,,, for mixed convection with (——) and with-
out radiation (—-—), at different wall emissivities (1)
g, = 0.01, (2) &, = 0.2, (3) &, = 1.0 for pure water vapour at
conditions 7T, =650 K. T, = 600 K, u, = 0.5 ms™' (Re,,
Gr., GrjRe? in the three cases are identical to those in
Fig. 4).

different H,O-air mixtures in the case of T, = 650K,
8, =02, u,=05ms ! T, =600 K. The value of
the H,O molar fraction xy o has been varied from 0
to 1. Results about conductive and radiative transfer
coeflicients are shown in Fig. U 1 for the different values
of xy o. When the water vapour molar fraction in the
mixture increases, the conductive transfer coefficient
increases and the radiative transfer coefficient
decreases, since the effect of the fluid radiation
becomes more significant when the concentration of
the absorbing and emitting gas species increases. Fluid
radiation generally strengthens conductive transfer.
On the other hand the fluid composition is changed
with the variation of xy,, and the conductivity,

{u) Conductive

s
% {b} Rodiative 2
5 [

T T T

00 01 02 03 04 05 06 07 08
x (m)
FiG. 10. Conductive and radiative heat transfer coefficients

vs x and wall emissivities ; same conditions and symbols as
in Fig. 9.
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8 \ Conductive

2

080 37 08

07 03 04 05 05
x {m}

Fic. 11. Conductive and radiative heat transfer coefficients
vs x and molar fraction of water vapour at T, = 650 K,
£.=02 T, =600K, u, =10ms~".

Prandt] number and other physical properties of the
fluid are changed also.

It should be pointed out that fluid radiation
decreases the wall radiative flux but increases the con-
vected enthalpy of the fluid.

In engineering problems related to coupled radi-
ation and mixed convection, one wishes to estimate
whether fluid radiation and mixed convection are both
important, or which one is dominant. Such a criterion
should account for the real gas radiation which does
not only depend on the temperature but also depends
on the medium opacity. We propose the following
dimensionless parameter:

%) (T -TH
hc’ ( Tw - T'x; )
where A and 2.(3) are respectivelv the conductive
transfer coefficient and the effective medium absorp-
tivity associated to the thermal boundary layer thick-

ness § without fluid radiation. The effective absorp-
tivity is given by

“e(é) =1 —Te

R = (16)

X
”,L (1=t ONL(T) - L (T )l dv

- dTI-TD - a7
The parameter R is related to the ratio between near-
wall radiative to gas transfer and conductive transfer.
On the other hand, the relative enhancement of con-
ductive heat transfer, due to gas radiation, is
R, = (g.—q%)/q. where g, and ¢ are respectively the
conductive fluxes when considering and neglecting gas
radiation, respectively. The ratio R, R vs X is shown
in Fig. 12 in various conditions. It is seen that this ratio
is practically independent on x for each calculation,
except near the leading edge. For engineering appli-
cations, the quantity 0.3R is a crude estimation of
conductive flux enhancement due to gas radiation.
Depending on the required accuracy. this criterion
shows easily if an exact coupled resolution is necessary
or not for a given problem. It is worth noticing that
the wall emissivity &, does not appear in equation (16)
since we are especially concerned with the effects of
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FIG. 12. Dependence of conductive flux enhancement due to
gas radiation on the dimensionless parameter R in various
conditions
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radiation on the conductive flux near the wall. More-
over, Fig. 10 shows that the conductive flux increases
with the wall reflectivity (1 —e¢,). This is a result of
the growing magnitude of radiative transfer from gas
layers far from the wall to the wall adjacent layer.
Consequently, the ratio R /R decreases with g, as it is
shown on Fig. 12 {curves h and g). A multiplicative
factor (2—¢,), accounting for wall reflection of gas
radiation, could be introduced in equation (16) for a
more precise analysis.

5. CONCLUSION

Coupled radiation and mixed convection heat
transfer in an absorbing and emitting real gas mixture
along a vertical isothermal plate has been investigated
using an implicit finite-difference technique with a
marching procedure for the solution of conservation
equations, and a random statistical narrow-band
model with the Curtis-Godson approximation for the
treatment of the radiative transfer part.

The radiation penetration length at atmospheric
pressure is found to be of the order of one pure H,0
equivalent metre in the case of mixed convection. This
length corresponds to the region within which the
temperature and velocity fields are affected by the gas
radiation, and is of one order of magnitude larger than
the boundary layer thickness for mixed convection
without fluid radiation. The boundary conditions at
infinity should be carefully examined.

Fluid radiation enhances the effect of the buoyancy
force, particularly far away from the wall. The thermal
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and dynamic flow fields are significantly modified
by fluid radiation when natural convection pre-
dominates.

The interaction of radiation with mixed convection
increases with the decrease of the wall emissivity and
with the increase of the radiating species in the gas
mixture.

Fluid radiation strengthens the wall conductive
transfer and weakens the wall radiative flux. The rela-
tive change in conductive flux is more significant than
in radiative flux.

A dimensionless parameter R is introduced to
characterize radiative effects on wall conductive flux.
Calculations in various conditions show that the rela-
tive enhancement of conductive flux by gas radiation
can be crudely estimated from this parameter.
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COUPLAGE DU RAYONNEMENT ET DE LA CONVECTION MIXTE LAMINAIRE
DANS UN MELANGE DE GAZ REELS ABSORBANTS ET EMETTEURS LE LONG
D'UNE PLAQUE PLANE VERTICALE

Résumé—Les propriétés radiatives du mélange sont obtenues par un modéle statistique aléatoire a bandes
étroites et I'approximation de Curtis—~Godson. Une technique de différences finies, developpée pour cette
¢€tude, est utilisce pour résoudre d’une mainiére couplée les équations de conservation de la masse, de la
quantité de mouvement et de 1’énergie. Un excellent accord entre nos résultats et ceux d’autres auteurs
est obtenu dans les cas de la convection naturelle, de la convection forcée et de la convection mixte
considérées sans rayonnement du fluide. L'examen des conditions aux limites a l'infini conduit 4 une
longueur de pénétration du rayonnement équivalente 2 un métre de vapeur d'eau pure d pression
atmosphérique, qui est d’un ordre de grandeur plus grande que I'épaisseur de la couche limite en convection
mixte sans couplage. La comparaison des résultats avec et sans rayonnement dans diverses conditions
montre que le rayonnement du gaz augmente ’effet de la convection naturelle sur la température, la vitesse,
et le coefficient conducto-convectif, mais diminue le flux radiatif a la paroi. Un paramétre adimensionné
R est introduit afin de permettre une estimation rapide mais grossiére de I'augmentation du flux conductif
a la paroi due au rayonnement du fluide.

GEKOPPELTER WARMEAUSTAUSCH DURCH STRAHLUNG UND LAMINARE
MISCHKONVEKTION IN EINER ABSORBIERENDEN UND EMITTIERENDEN
MISCHUNG REALER GASE ENTLANG EINER VERTIKALEN PLATTE

Zusammenfassung—Der Anteil der Wirmeiibertragung durch Strahlung wird unter Anwendung eines
statistischen Zufallsmodells im Schmalbandbereich und der Curtis-Godson-Niherung behandelt. Ein fiir
diese Untersuchungen entwickeltes Finite-Differenzen-Verfahren wird zur Lésung der Erhaltungs-
gleichungen fiir Masse, Impuls und Energie in gekoppelter Weise angewendet. Eine hervorragende Uber-
einstimmung zwischen unseren Finite-Differenzen-L3sungen und denen anderer Autoren wird festge-
stellt fiir die Fille der reinen natiirlichen Konvektion ohne Strahlung. Die Untersuchung der Rand-
bedingungen im Unendlichen zeigt, daB die Strahlungseinwirkungsldnge bei Atmosphirendruck von der
GroBenordnung eines Meters Wasserdquivalent ist. Dieses ist eine Gro8enordung gréBer als die Grenz-
schichtdicke bei gemischter Konvektion ohne Strahlung. Vergleiche der Ergebnisse mit und ohne
Strahlung bei berschiedenen Bedingungen zeigen, daB die Fluidstrahlung den EinfluB der Auftriebskrifte
verstirkt, die Temperatur, Geschwindigkeit und Warmeiibertragung durch Leitung an der Wand erhdht,
aber die Strahlungswirmestromdichte an der Wand erniedrigt. Es wird ein dimensionsloser Parameter R
eingefiihrt, um eine genaue Berechnung der Erh6hung der Warmestromdichte durch Leitung an der Wand
aufgrund der Strahlung zu ermdglichen.
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CBS3AHHBIE HUTVUEHME U JIAMHHAPHAS CMEMAHHAST KOHBEKUUSA B
MOTIOMAIOMER ¥ HUTYUYAIOMENR FAIOBOR CMECH, OBTEKAIOIEN
BEPTUKAJIBHYIO [UTACTHHY

Amorames—C HCHONBIOBAHNEM BEPOSTHOCTHO-CTATHCTHYECKOR y3KOnon0cHO# Moaenu H nprbmme-
uux Kypruca-T'oacosa ucenenyerca ayqucThit neperoc. Qs peilicHrs cassaNHbX ypastennli coxpase-
HHR MACCHI, HMITY/IHCA H JHSPrud NpEMeHNCTCK paspaborauunilt ANS ZAHHOTO HCCACAOBAHMN Hesmmbil
METOR XOHEYHBIX pasnocTeil. OGHapyXeRO OYCHL XOPOLISE COrNACHE MEXKJTY PCIICHHAMA, HONYICHHMNME
KOHCYHO-DA3HOCTHAIM MeEToIoM B AaHHOH# pabore H B paboTax Apyrux aBTOPOB VIR CIYYaes MHCTO
€CTECTBEHHOM, YHCTO BHHYXACHHON H CMCIIANHOA KOHBEKUMH B OTCYTCTBHC HiTyYenus. Hayuenue rpa-
HUYHLIX yCnOBUit HA GCCXOHCUHOCTH NOKA3HBACT, ITO NPH ATMOCHEPHOM HABICHHH HISYUCHHE NPONH-
xacT Ha rayGHHy, KOTOpan OPEMEPHO PAaBHA OHOMY JKBHBANEHTHOMY MeTpY B wncTo#t H,O u xoropas
HA NOPAIOE BEHYNHEL GONble TOMUMHEL NOrPAHHYHOTO C/IOR NpH cMeuianHok xousexuny 63 manyve-
HMS XUAXOCTH. CPaBHCHHE Pe3Y/IbTATOB, NOJYYEHHBIX [UIN CJIYyHacB C HIIyueHueM K Ge3 Hero B pasymv-
HBIX YCI0BPHAX MOKA3LIBACT, YTO HATYUCHHE KHAKOCTH YCHIHBACT HdEKT NOTLEMHBIX CHII, YBEIHIHBACT
TEMNEPATYPY, CKOPOCTH ¥ KOHAYKTHBHBIH TEILIONEPEHOC Y CTCHKH 1 YMEHLINACT HaTyvaloumit Tenosol
nOTOK Ha crenxe. [nx rpyGoil OLEHKY YBENWYCHUA KOHAYKTHBHOTO TEILUIOBOTO OTOKA Ha CTeHke, obyc-
JMOBACHHOTO HATYUCHHEM, BBOARTCA SespaimepHuill napamerp R,
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